Home

Top Jobs
Senior Project Engineer
CIVIL ENGINEER OR PROFESSIONAL ENGINEER
Energy Analyst- Project Engineer
Energy Engineer II
Senior Mechanical Engineer
Energy Program Design Supervisor-BU
Director of Engineering
Electricity Sector Specialist
Senior Energy Efficiency Program Analyst
Mechanical Engineer
Submit a Position
Find a Position

Upcoming Events
Uganda and Tanzania Localisation Forum 2018 / Mozambique Assembly 2018
Polana Serene Hotel, Avenida Julius Nyerere 1380, Maputo, Mozambique.,
1/22/18 - 1/26/18
AME Roundup 2018
Vancouver Convention Centre West, 1055 Canada Place, Vancouver V6C 0C3, Canada,
1/22/18 - 1/25/18
Africa Energy Forum: Off the Grid
Dar Es Salaam,
1/23/18 - 1/25/18
East Africa Energy and Infrastructure Summit
Dar Es Salaam,
1/23/18 - 1/23/18
MiaGreen Expo & Conference 2018 (9th edition)
777 NW 72 Ave,
1/24/18 - 1/25/18
Submit an Event
View All Events


Sain Featured Employer

Lighting for Learning

 

Follow energycareer on Twitter

Sign-Up for Free Energy, Facility, Power Newsletter (EFPN) newsletter

 

 

 

In 2016, education put-in-place construction spending reached $88.7 billion, making it the largest building market, according to the U.S. Commerce Department.

 

“This is an exciting time for the K-12 lighting market,” said Trish Foster, LC, LEED-Green Associate, Director, Education Market Development, Acuity Brands. “From a renovation standpoint, this means older, dated schools are looking not only for more-efficient solutions but also solutions that can have a positive impact on the learning environment.”

The modern classroom is changing to accommodate new teaching methods and technologies. Classrooms are no longer static environments. They are incorporating a range of technologies, from mobile devices and computers to interactive whiteboards and modular furniture. They are becoming more collaborative spaces in which teachers and students interact and exchange ideas in nontraditional ways. If activities and spaces are flexible, the lighting must be flexible as well.

“Video displays, whiteboards on multiple walls, tablets for all students, Wi-Fi in every classroom are some of the things we see in new classrooms,” said Terry Clark, Founder, Finelite. “Since each of these needs a different type of light at different times in different intensities, new lighting systems are needed.”

He described the K-12 education market as “underserved.”

“More attention is given to selecting flooring than the best way to light a classroom,” Clark said. “As a result, too often, lighting has been bought on a lowest first-cost basis. When lowest first cost is the focus, it is difficult for a distributor to add value and make a profit on the project. That is about to change.”

Image courtesy of Finelite.

Lighting change
From LED technology we can gain high energy efficiency and optical control, flexibility with connected controls, ability to adjust color appearance and other capabilities. The latest energy codes encourage LED adoption while requiring a full range of control strategies. The Illuminating Engineering Society’s RP3 document recognizes evolving best practices. And building recognition standards and programs such as the Collaborative for High-Performance Schools (CHPS) promote use of these best practices.

The majority of energy codes require manual control, occupancy/vacancy sensing, and daylight-responsive controls in classrooms. The sensor must automatically turn the lights OFF within 30 minutes of the space being vacated. If the sensor automatically turns the lights ON, it must do so to 50 percent or less of lighting power (bilevel switching). One or more manual switches must be installed at the entrance allowing control of all general lighting; additional switches may be installed as needed. Daylight-responsive controls must be installed where daylight is present and respond via bilevel switching, step dimming, or continuous dimming.

A classroom lighting solution that maximizes CHPS points is energy code-compliant, features daylight and indirect/direct electric lighting, and allows teachers to control the general and separate whiteboard (if present) lighting. The general lighting is controlled in two modes: General (10-30 footcandles in the student zone) or AV (maximum 7 footcandles on the screen). The teacher may also manually override the occupancy sensor time delay during written tests. If daylight-responsive controls are used, the light sensor takes precedence over manual dimming for the upper light level limit.

“The ease of dimming LEDs is a huge advantage,” said Charles Knuffke, Wattstopper Systems VP and Evangelist, Legrand. “Additionally, there is an opportunity to move to shorter time delays when outside normal hours, such as the summer period, since there’s no reduction of product life.”

He added that controls aren’t just for new buildings anymore. “Many classrooms still have no automatic controls,” he pointed out. “These spaces should look at either wireless or simple to install controls that can be retrofitted in easily.”

Knuffke warned that while controls can add utility and energy savings, distributors should favor products that are easy to use and recommend training teachers about how the controls work.

Finelite responded to a DOE RFP to build a lighting and control system that would serve the classroom of the future. The system includes highly efficient tunable-white LED lighting, automatic controls, and a custom teacher interface promoting easy use of teacher controls. Image courtesy of Finelite.

Color control
One of the industry’s latest major product trends is tunable-white lighting, which offers a choice of correlated color temperatures (CCTs) typically from visually warm (low CCT) to visually cool (high CCT). In a classroom, this is typically achieved using a luminaire housing separately controllable warm- and cool-white LED arrays, with the desired CCT achieved via relative dimming between these two primaries.

“The ability to tune the color temperature of the light is certainly one of the most significant advances,” Foster said. “A class with intensive laboratory-style learning may benefit from a different color temperature than a class focusing more on reading or independent studies. With advancements in LED technology and easy-to-use control platforms, every classroom can now benefit from tunable-white lighting.”

She pointed to research suggesting changing CCT based on classroom activity can affect mood, behavior, and concentration. In one study, a fifth-grade classroom in Carrollton, Texas installed tunable-white lighting at the start of the 2016 school year and saw an improvement over the previous year’s scores in the annual state examination.

“The kiddos embrace it,” Foster added. “They remind the teacher to change the lighting when an activity changes. They also learn about the impact of lighting on the space.”

Clark believes efficient, dimmable, and tunable-white LED lighting will serve as an integral part of the classroom of the future. In 2014, Finelite responded to a Department of Energy (DOE) request for proposal to create a robust classroom lighting solution would deliver exceptional lighting quality for very low energy levels. The company built the luminaires, integrated controls, and mocked up a classroom for testing.

Capabilities include controls specifically designed for teachers to control CCT, dimmable sources, centralized building control, energy-code compliant control, plug-and-play installation, and a single source for pricing, shipping, and warranty. All while delivering a substantially lower life-cycle cost.

“The new system goes sufficiently far beyond what is presented in CHPS that the section will need to be substantially updated and the points assigned to better lighting increased significantly,” Clark added. “A new lighting approach is needed for every classroom, and it must be applied across the board—not reserved for only the most affluent school districts.”

Tunable-white lighting offers the ability to change CCT according to classroom activity, such as test taking, calming, and more. Image courtesy of Acuity Brands.

Selling school lighting
Foster advised distributors to think outside the traditional way of selling lighting products. “It is not about the total solution, integrating luminaires and controls,” she said. “Simple energy savings and payback is still important, but the conversation is now expanding into an emotional connection where student performance and optimizing the learning environment is key.”

She added distributors should expand the reach of the conversation to stakeholders who were perhaps not engaged in the past. “It’s now a full circle between facility managers, principals, teachers, and the distributor,” she said.

Knuffke sees distributors in the perfect place to sell lighting to both new and existing construction projects. “Nothing beats having a close relationship with the school facility personnel in the areas they cover, having the ability to educate on new technologies and product innovations, and understanding the local electrical and energy codes,” he said. “Keep educating yourself—distributors that do have a competitive advantage.”

Clark said classroom lighting is a hot market ripe for good selling and upselling opportunities. “Ask great questions,” he advised. “If they are asked to price a retrofit, ask why they are not taking the opportunity to upgrade to a new system. Do not assume the only issue is first purchase price. Strive to add value to the project. No other areas of school design and construction has undergone as much change as the way we should light classrooms. You will bring value to your customers by helping make them aware of this. Bringing increased value to your customers is what you need to continue to succeed in the years to come.”

Return Home

 

Follow energycareer on Twitter